
Grammars
At the heart of speech application development At the heart of speech application development
is the grammar, the list that defines which
words a speech application can recognize.
Grammars will influence — and be influenced
by — many other facets of a speech
application, including prompts, menu choices,
and the overall call flow of the application.
In this paper, we explore several strategies to In this paper, we explore several strategies to
designing grammars to make your grammars
more effective, thereby increasing the accuracy
and overall success rate of your speech
recognition applications.

Keep grammars as
small as possible, with
"just enough" coverage
to serve the majority of
your callers.

Consider gConsider grammar
design at the same time
you design your
prompts.

TTest any changes you
make with actual call
data garnered from a
deployed application.

http://www.lumenvox.com/

A grammar is a file that contains a list of words that your
speech application will recognize. Automatic speech recognition
systems that are speaker independent, such as the LumenVox
Speech Engine, are grammar based, meaning that they do not
recognize any words that are not defined by a grammar.
Most gMost grammars today are written according to the Speech
Recognition Grammar Specification (SRGS) format established
by the W3C. SRGS includes two equivalent formats, a
structured XML format called GrXML and a more
human-readable format called Augmented Backus-Naur Form
(ABNF).
A gA grammar written in SRGS defines not just the words that will
be recognized, but also the allowable phrases that can be
spoken, including single words, short commands, and full
sentences.
This paper will not cThis paper will not cover the specifics of writing grammars using
either format. For that, you may refer to the latest SRGS
specification. Instead, this paper explores the fundamental
design principles involved in grammar creation.

A common mistake, made especially by designers new to
speech recognition, is to try to develop grammars that cover
every possible response a user could speak. This attempt at
comprehensive coverage, however, causes more problems than
it solves.
GeneGenerally speaking, recognition accuracy is higher with a
smaller grammar. Larger grammars are more likely to include
words or phrases that sound similar, and thus are likely to
confuse the speech engine. By keeping your grammars small,
speech engines are able to better match what speakers say
with the words in the grammar.
A well-designed application will giA well-designed application will give the user a consistent
mental model of how it works. Users will have a good idea of
what is expected from them and they will understand how to
get what they want from the application. In this case, each
interaction will produce fairly predictable responses. A very
small percentage of callers — around 3 to 5 percent — will
provide unpredictable responses.

About Grammars

Provide “Just Enough” Coverage

http://www.lumenvox.com/

Fig. 1: A directed
prompt produces
predictable responses
from callers. The
majority of callers
respond with a few
phrases. Note there
are a large number of are a large number of
responses that are
only given by a handful
of callers.

Because the responses of most callers are predictable, you can
get very good coverage of 95 to 98 percent of the interactions
with a fairly small grammar. This is an advantage to the
developer, since it actually takes less effort to achieve better
results. Attempts to cover the remaining small group of outlying
callers will result in a very considerable increase in grammar
size.
As those extAs those extra words are added to cover the small set of
callers, overall accuracy tends to drop, since the grammar size
has increased significantly. Also, confidence scores — a
probability that reflects the likelihood a speaker’s utterance
matched the grammar — become somewhat less useful with
large grammars because of increased confusability. Speech
application developers who attempt to cover every possible
response hurt the majoriresponse hurt the majority of their callers by trying to help a
small percentage of callers.

http://www.lumenvox.com/

Even small changes to grammars to account for very uncommon
responses can be detrimental. A change to benefit 1 percent of
callers might negatively affect 2 percent of the callers, a net
loss in success.
FFor instance, you might have a prompt that asked callers to say
the name of the U.S. state from which they’re calling. As a
developer, you might be tempted to add a list of the world’s
countries to the grammars, in case somebody was calling
internationally. If the application recognized a foreign country,
the application could respond that other countries are not
supported. While this might be nice functionality in theory, in
prpractice adding the list of countries increases the chance that a
state will be confused for a country. If the majority of your
callers are saying states, these misrecognitions will frustrate
those callers who follow instructions.
It is better to have a simple grammar, and rely on the
confidence score to tell you when a caller has spoken outside
the grammar. You can then have a prompt explaining to the
caller that the system did not understand what was said. Most
callers will then re-phrase their utterance in a more predictable
way the second time.
Callers who giCallers who give wildly unexpected responses, e.g. callers who
swear at the system, should never be accommodated in
grammars. Consider these responses as simply inappropriate
input. It is always counter productive to try and deal with
callers who are purposely misusing an application.
In the same In the same way a DTMF (Touch ToneÒ) application would not
respond correctly to callers mashing their telephone keypad, a
speech application should not be built to handle completely
inappropriate input.

There is a close relationship between a prompt and its
corresponding grammars, and this relationship should be
reflected during every phase of the application development.
The grammars associated with a prompt determine what
responses the speech application can recognize.
A prompt will also determine the sort of responses callers give,
and thus shape what a grammar will look like.
Prompts that direct callers to giPrompts that direct callers to give specific responses tend to
produce response distributions like the one seen in Fig. 1,

Design Grammars and Prompts Together

http://www.lumenvox.com/

where a majority of the callers give a relatively small number of
responses. Open-ended prompts tend to produce distributions
like the one seen in Fig. 2, where responses are much more
spread out.
FFor this reason, it is usually preferable to create prompts that
ask questions that are not very open ended. Not only are
predictable responses are easier to handle by your speech
applications, but a small cluster of responses being given by a
majority of callers also tends to reduce confusability a speech
engine.
A good prompt that liA good prompt that lives up to its name and prompts users for
specific responses will make it much easier to design grammars,
since it will be relatively easy to predict the majority of
responses. This will make grammars smaller and less complex.

Fig. 2:
Open-ended
prompts produce a
flat distribution of
responses. This
variation in
responses makes
it more difficult to it more difficult to
design and tune
effective
grammars.

http://www.lumenvox.com/

Good prompts ask callers a question that has a predictable
response. One method to constrain what the caller will say is to
provide several responses. A prompt in an interactive voice
response system for a pizza restaurant might ask callers a
question like “What size pizza would you like? We have small,
medium, large, or extra large,” placing emphasis on the sizes. If
the callers are not provided these examples they may give
inappropriate responses such as “16 inches” or “20 inchesinappropriate responses such as “16 inches” or “20 inches.”
Callers are being asked a question and immediately given
examples of expected responses, providing them with a clear
mental model of what the application expects.

Most speech recognition engines, including the LumenVox
Speech Engine, include several common built-in grammars.
These grammars tend cover domains such as yes/no, digits,
natural numbers, dates, and monetary amounts.
DeDevelopers should take advantage of these built-in grammars,
as they are good examples to follow for grammar creation. The
grammars also provide a quick and easy way to recognize
utterances needed for many of the most common speech
applications.

One problem that sometimes occurs when developers use
built-in grammars is the creation of monolithic grammar files.
When using built-in grammars, it is not a good idea to just copy
the contents of a built-in grammar into a newly created grammar
file.
Speech engines allow deSpeech engines allow developers to activate and deactivate
grammars as needed, and thus it is a good idea to keep
grammars focused on a specific domain. If a certain prompt calls
for several domains — e.g. users can issue prompt-specific
commands, say yes/no, or use global commands — it is best to
activate a few different grammars. If the next prompt only
required one grammar, the others could be deactivated for that
recognition.recognition.
Using modular grammars accomplishes several things. It keeps
the number of words to be recognized at any given time down,
helping accuracy. With a single monolithic grammar file that is

Build Modular Grammars

Don’t Reinvent the Wheel

http://www.lumenvox.com/

The SRGS grammar specification allows for semantic
interpretation to be done within a grammar using a standard
called Semantic Interpretation for Speech Recognition (SISR).
Using ECMAScript (also known as JavaScript), SISR provides a
robust method of handling semantic interpretation entirely
within a grammar.
BrieflBriefly, semantic interpretation is the process of distinguishing
between what a speaker says and what a speaker means.
Imagine a call router prompt. A caller may ask to speak to
“Technical Service” while another caller asks for “Technical
Support.” Both callers mean the same thing but use different
words. Obtaining meaning from the exact utterance is semantic
interpretation.
Because there exists such Because there exists such variety in how users may phrase the
same response, semantic interpretation must be performed at
some point in every speech application. New speech
developers, often not familiar with SISR, place semantic
interpretation within the code of their speech applications.
It is within gIt is within grammars that semantic interpretation really
belongs. Keeping it within an application can cause several
problems, especially when making changes to that application.
Imagine again that Imagine again that you have built the call router example
previously mentioned. After it has been deployed, you find
callers are also saying “Customer Support” to mean “Technical
Support.” First, you need to add the phrase “Customer
Support” to the grammar in order to recognize it. If the
semantic interpretation is done in your application code, you
must now also update the application so that it can handle the
new phnew phrase.

always active, a speech recognition engine tries to recognize
words that are inappropriate for a specific prompt, increasing
the chance that one of those words is returned by the engine.
Modular gModular grammars are also much easier to troubleshoot and
tune. It is possible to introduce logical errors in grammar files,
such as recursion problems, and if grammars contain fewer
rules it is easier to diagnose these sorts of problems. It is also
easier to make changes as part of the tuning process if
grammars are kept small and specific to a prompt.

Keep Interpretation Inside Grammars

http://www.lumenvox.com/

An important part of developing speech applications is the
tuning cycle, the iterative process where developers review the
performance of an application and adjust applications and
grammars accordingly.
Before changes in gBefore changes in grammars are made to production systems,
they should be tested thoroughly. Ideally, you should perform
these tests using data gathered from actual calls. Using a tool
like the LumenVox Speech Tuner, you can transcribe utterances
from callers and then test new grammars against the
transcribed audio. The Speech Tuner will let you know exactly
how the changes in the grammars have affected recognition
results.results.
Validating grammar changes against real call audio will help you
safeguard against the problems mentioned previously, such as
adding confusability while trying to account for rare responses.
By testing changes before deployment, you will be able to tell if
additions to grammars positively affect success rate.

If you use SISR and keep semantic interpretation within the
grammar, you would only need to update the grammar. By
keeping semantic interpretation within an application’s code
space, you effectively duplicate the words to be recognized
from the grammar, creating problems if they ever become out of
synch.

Test Changes With Real Data

http://www.lumenvox.com/

For more information
on the Speech
Engine go to:
www.lumenvox.com/
products/
speech_engine

Good grammars are as small as possible while still serving a
majority of your callers, and grammars should not include
words or phrases that are only used by a small percentage of
callers. You should consider grammars an important part of a
speech application’s overall design. Your grammars are
developed in tandem with the application prompts. These
prompts should guide users to give predictable responses to
help help keep grammar size manageable.
As a speech developer, you should take advantage of built-in
grammars included with a speech engine, but take care to not
simply copy the contents of those grammars into your own.
Instead, build small, modular grammars and load and unload
them as needed by your speech application. Using standards
like SISR, put semantic interpretation within your grammars so
as to minimize the possibility of the various parts of the
application becoming out of synch. Be sure that wheneapplication becoming out of synch. Be sure that whenever you
make changes to grammars that you test those changes, using
data gathered from calls to that system.

Call LumenVox today at 1-877-977-0707 to discuss
your project and learn about ways we can partner to
make your speech application a success.

Summary

http://www.lumenvox.com/
http://www.lumenvox.com/contact/
http://www.lumenvox.com/products/speech_engine/

